27. Constraints from dsnap vs. dfrag

(N.B. These values were the first try at constraints. There were calculated with L7AC, not L8AC. That is why there is no PE here. Need to think about how there results relate to those obtained with L8AC and PE.)

 

Calculations for mhead = 7 lb
    Here is the first set of three tables, constructed with default values of all variables. That makes mhead = 7 lb. We first consider the tables individually, then show how the results for the mass and velocity of the cloud constrain the answers for the lurch.
    The first table (below) is for vlurch. The values in the upper left are the most negative (meaning the strongest rearward lurch), and reach 7.66 ft s-1. The size of the lurch decreases to the lower right, then passes through zero into positive values (a forward lurch), then passes through a zone of negative values, and finally on the far right returns to positive values.

vlurch, ft s-1

dfrag, ft dsnap, in 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
2 -7.66 -6.46 -5.25 -4.05 -2.86 -1.69 -0.55 0.26 2.15
3 -4.73 -3.93 -3.14 -2.35 -1.57 -0.81 -0.09 0.14 1.98
4 -3.28 -2.68 -2.10 -1.51 -0.94 -0.38 0.11 -0.04 1.95
5 -2.41 -1.94 -1.48 -1.02 -0.57 -0.14 0.21 -0.25 1.98
6 -1.84 -1.45 -1.07 -0.70 -0.33 0.01 0.25 -0.47 2.03
7 -1.44 -1.11 -0.78 -0.47 -0.17 0.10 0.27 -0.69 2.10
8 -1.14 -0.85 -0.57 -0.30 -0.05 0.17 0.27 -0.92 2.18
9 -0.91 -0.66 -0.41 -0.18 0.04 0.21 0.25 -1.15 2.26
10 -0.72 -0.50 -0.29 -0.08 0.10 0.24 0.23 -1.39 2.35

    The second table (below) is for mcloud. It has highest values in its upper left (exceeding 4 lb). The values decrease systematically toward its lower right, and reach a broad triangular zone of -0.01 to -0.02 lb. These negative masses are of course impossible.

mcloud, lb

dfrag, ft dsnap, in 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
2 4.31 3.24 2.31 1.52 0.90 0.43 0.12 -0.01 0.02
3 1.95 1.45 1.03 0.67 0.39 0.18 0.04 -0.02 0.00
4 1.10 0.81 0.57 0.37 0.21 0.09 0.02 -0.02 -0.01
5 0.70 0.51 0.36 0.23 0.13 0.05 0.00 -0.02 -0.01
6 0.48 0.35 0.24 0.15 0.08 0.03 -0.00 -0.02 -0.02
7 0.35 0.25 0.17 0.11 0.06 0.02 -0.01 -0.02 -0.02
8 0.26 0.19 0.13 0.08 0.04 0.00 -0.01 -0.02 -0.02
9 0.20 0.15 0.10 0.06 0.03 0.00 -0.01 -0.02 -0.02
10 0.16 0.12 0.08 0.04 0.02 -0.00 -0.01 -0.02 -0.02

    The third table (below) is for vfrag = vcloud. It has smallest values in its upper left (as low as 75 ft s-1), highest values toward its lower right (up to 8900 ft s-1), but then a column of negative values on the far right.

vfrag, ft s-1 = vcloud

dfrag, ft dsnap, in 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
2 75 87 103 127 166 237 419 1781 -791
3 112 130 155 191 248 356 628 2671 -1186
4 150 174 206 254 331 474 837 3562 -1581
5 187 217 258 318 414 593 1047 4452 -1976
6 225 260 309 381 497 712 1256 5342 -2372
7 262 304 361 445 579 830 1466 6233 -2767
8 300 347 413 508 662 949 1675 7123 -3162
9 337 391 464 572 745 1068 1884 8013 -3557
10 375 434 516 636 828 1186 2094 8904 -3953

    External constraints on vlurch
    The most important external constraints on the lurch are provided by the mass of the cloud, mcloud, which may not be negative or greater than 1 lb (the mass of the right hemisphere that was found to be blown out). Here is the table of masses with those constraints shown in boldface. 

mcloud, lb

dfrag, ft dsnap, in 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
2 4.31 3.24 2.31 1.52 0.90 0.43 0.12 -0.01 0.02
3 1.95 1.45 1.03 0.67 0.39 0.18 0.04 -0.02 0.00
4 1.10 0.81 0.57 0.37 0.21 0.09 0.02 -0.02 -0.01
5 0.70 0.51 0.36 0.23 0.13 0.05 0.00 -0.02 -0.01
6 0.48 0.35 0.24 0.15 0.08 0.03 -0.00 -0.02 -0.02
7 0.35 0.25 0.17 0.11 0.06 0.02 -0.01 -0.02 -0.02
8 0.26 0.19 0.13 0.08 0.04 0.00 -0.01 -0.02 -0.02
9 0.20 0.15 0.10 0.06 0.03 0.00 -0.01 -0.02 -0.02
10 0.16 0.12 0.08 0.04 0.02 -0.00 -0.01 -0.02 -0.02

    Most of the forbidden solutions lie at the lower right of the table, and represent negative masses of the cloud. Adjacent to this zone lies a diagonal zone of very low masses, zero or tiny positive values, which probably also should be excluded. If we arbitrarily remove solutions with mcloud <0.1 lb, which is a mild constraint because 1 lb was blown out, we get the table below, with the new deletions shown in boldface italic. This produces a considerably narrower range of acceptable solutions that forms a rough diagonal from lower left to upper right.

mcloud, lb

dfrag, ft dsnap, in 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
2 4.31 3.24 2.31 1.52 0.90 0.43 0.12 -0.01 0.02
3 1.95 1.45 1.03 0.67 0.39 0.18 0.04 -0.02 0.00
4 1.10 0.81 0.57 0.37 0.21 0.09 0.02 -0.02 -0.01
5 0.70 0.51 0.36 0.23 0.13 0.05 0.00 -0.02 -0.01
6 0.48 0.35 0.24 0.15 0.08 0.03 -0.00 -0.02 -0.02
7 0.35 0.25 0.17 0.11 0.06 0.02 -0.01 -0.02 -0.02
8 0.26 0.19 0.13 0.08 0.04 0.00 -0.01 -0.02 -0.02
9 0.20 0.15 0.10 0.06 0.03 0.00 -0.01 -0.02 -0.02
10 0.16 0.12 0.08 0.04 0.02 -0.00 -0.01 -0.02 -0.02

    The next external constraint comes from the velocity of the fragments and the cloud, here set equal to each other. The fundamental constraint here is that neither velocity can be negative, because both cloud and large fragments moved forward. A second level of constraint is the sound barrier—it is highly unlikely that the fragments from the explosion could be given enough energy to exceed the speed of sound, given the extreme turbulence induced at that speed. That allows us to exclude speeds greater than 1100 ft s-1. The table with these two constraints (below) shows that they eliminate many solutions in the lower right, as did the negative and small masses of cloud. This is equivalent to saying that the high and negative velocities of the cloud correspond to zero or negative masses.

vfrag, ft s-1 = vcloud

dfrag, ft dsnap, in 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
2 75 87 103 127 166 237 419 1781 -791
3 112 130 155 191 248 356 628 2671 -1186
4 150 174 206 254 331 474 837 3562 -1581
5 187 217 258 318 414 593 1047 4452 -1976
6 225 260 309 381 497 712 1256 5342 -2372
7 262 304 361 445 579 830 1466 6233 -2767
8 300 347 413 508 662 949 1675 7123 -3162
9 337 391 464 572 745 1068 1884 8013 -3557
10 375 434 516 636 828 1186 2094 8904 -3953

    Also note that the external constraints work to eliminate most of the positive solutions, or make nearly all the acceptable answers rearward lurches. In other words, forward or zero lurches are all but forbidden by external constraints from the mass and velocity of the cloud. If this result holds up, it will be very powerful, for it says that rearward lurches are the rule, not the exception.

    Internal constraints on vlurch
    I have mixed feelings about using internal constraints on the lurch, for they refer to what ought to be rather than to what can possibly be, as the external constraints do. But if we accept the fact that the computed rearward lurch may not exceed 1 ft s-1 because the observed one did not, we get the table below.

vlurch, ft s-1

dfrag, ft dsnap, in 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
2 -7.66 -6.46 -5.25 -4.05 -2.86 -1.69 -0.55 0.26 2.15
3 -4.73 -3.93 -3.14 -2.35 -1.57 -0.81 -0.09 0.14 1.98
4 -3.28 -2.68 -2.10 -1.51 -0.94 -0.38 0.11 -0.04 1.95
5 -2.41 -1.94 -1.48 -1.02 -0.57 -0.14 0.21 -0.25 1.98
6 -1.84 -1.45 -1.07 -0.70 -0.33 0.01 0.25 -0.47 2.03
7 -1.44 -1.11 -0.78 -0.47 -0.17 0.10 0.27 -0.69 2.10
8 -1.14 -0.85 -0.57 -0.30 -0.05 0.17 0.27 -0.92 2.18
9 -0.91 -0.66 -0.41 -0.18 0.04 0.21 0.25 -1.15 2.26
10 -0.72 -0.50 -0.29 -0.08 0.10 0.24 0.23 -1.39 2.35

    There is another internal constraint on the lurch, however, namely that it was to the rear. That allows us to remove from consideration all positive values. Those deleted cases are shown in boldface italic in the table below. The two sets of internal constraints give a diagonal pattern of acceptable solutions that resembles the one from the masses but is displaced downward from it.

vlurch, ft s-1

dfrag, ft dsnap, in 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
2 -7.66 -6.46 -5.25 -4.05 -2.86 -1.69 -0.55 0.26 2.15
3 -4.73 -3.93 -3.14 -2.35 -1.57 -0.81 -0.09 0.14 1.98
4 -3.28 -2.68 -2.10 -1.51 -0.94 -0.38 0.11 -0.04 1.95
5 -2.41 -1.94 -1.48 -1.02 -0.57 -0.14 0.21 -0.25 1.98
6 -1.84 -1.45 -1.07 -0.70 -0.33 0.01 0.25 -0.47 2.03
7 -1.44 -1.11 -0.78 -0.47 -0.17 0.10 0.27 -0.69 2.10
8 -1.14 -0.85 -0.57 -0.30 -0.05 0.17 0.27 -0.92 2.18
9 -0.91 -0.66 -0.41 -0.18 0.04 0.21 0.25 -1.15 2.26
10 -0.72 -0.50 -0.29 -0.08 0.10 0.24 0.23 -1.39 2.35

    Combined external constraints on vlurch
    Now we combine the constraints and see what solutions remain. First we combine the external constraints from mcloud and vcloud, and darken the corresponding cells for vlurch. That gives:

vlurch, ft s-1

dfrag, ft dsnap, in 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
2 -7.66 -6.46 -5.25 -4.05 -2.86 -1.69 -0.55 0.26 2.15
3 -4.73 -3.93 -3.14 -2.35 -1.57 -0.81 -0.09 0.14 1.98
4 -3.28 -2.68 -2.10 -1.51 -0.94 -0.38 0.11 -0.04 1.95
5 -2.41 -1.94 -1.48 -1.02 -0.57 -0.14 0.21 -0.25 1.98
6 -1.84 -1.45 -1.07 -0.70 -0.33 0.01 0.25 -0.47 2.03
7 -1.44 -1.11 -0.78 -0.47 -0.17 0.10 0.27 -0.69 2.10
8 -1.14 -0.85 -0.57 -0.30 -0.05 0.17 0.27 -0.92 2.18
9 -0.91 -0.66 -0.41 -0.18 0.04 0.21 0.25 -1.15 2.26
10 -0.72 -0.50 -0.29 -0.08 0.10 0.24 0.23 -1.39 2.35

These constraints limit the values of vlurch to -0.4 to -2.7 ft s-1 (i.e., all negative). This is equivalent to saying that the external constraints imposed by the properties of the cloud remove forward lurches from consideration and leave moderate to strong rearward lurches as the only allowed solutions. Again, this is an extremely important result, which essentially says that as long as there is a cloud of diffuse fragments that moves forward, the head and body will mechanically recoil rearward with a speed similar to the one that was observed.

    Combined external and internal constraints on vlurch
    Last, we combine the internal constraints for the lurch with the external constraints in order to get the full picture of allowed vs. forbidden solutions. The full list of constraints is:

Since the internal constraints allow the same general diagonal shape of values but positioned lower on the table, the result is a narrower band of acceptable solutions:

vlurch, ft s-1

dfrag, ft dsnap, in 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
2 -7.66 -6.46 -5.25 -4.05 -2.86 -1.69 -0.55 0.26 2.15
3 -4.73 -3.93 -3.14 -2.35 -1.57 -0.81 -0.09 0.14 1.98
4 -3.28 -2.68 -2.10 -1.51 -0.94 -0.38 0.11 -0.04 1.95
5 -2.41 -1.94 -1.48 -1.02 -0.57 -0.14 0.21 -0.25 1.98
6 -1.84 -1.45 -1.07 -0.70 -0.33 0.01 0.25 -0.47 2.03
7 -1.44 -1.11 -0.78 -0.47 -0.17 0.10 0.27 -0.69 2.10
8 -1.14 -0.85 -0.57 -0.30 -0.05 0.17 0.27 -0.92 2.18
9 -0.91 -0.66 -0.41 -0.18 0.04 0.21 0.25 -1.15 2.26
10 -0.72 -0.50 -0.29 -0.08 0.10 0.24 0.23 -1.39 2.35

The remaining values of vlurch are -0.4 to -1.0 ft s-1, which make a narrow diagonal band from lower left to upper right. The diagonality means that dsnap and dfrag have similar-sized effects, as we saw above. Since their effects are both positive (increases in the variable increase the forward components of the lurch, or decrease its rearward speed), the effective slope of their relation must be negative, as shown here. In other words, the observed lurch of 0.4–1.0 ft s-1 in the rearward direction represents a delicate balance between dsnap and dfrag. As one increases, the other must decrease to maintain the balance, and vice versa.
    The main feature of the answer, however, is that the acceptable solutions fall in the narrow band between 0.4 and 1.0 ft s-1 in the rearward direction. The external constraints cut off the low end of the lurch (speeds less than 0.4 ft s-1); the internal constraints cut off the high end (speeds greater than 1 ft s-1). The combination leaves only the narrow band between 0.4 and 1 ft s-1 in the rearward direction. If you are uncomfortable with internal constraints, you can say that the external constraints limit the lurch to values of 0.4 to 2.7 ft s-1, all in the rearward direction, and that the observed lurch is in the lower end of that range.
    The table for mcloud with the same cells boldfaced is:

mcloud, lb

dfrag, ft dsnap, in 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
2 4.31 3.24 2.31 1.52 0.90 0.43 0.12 -0.01 0.02
3 1.95 1.45 1.03 0.67 0.39 0.18 0.04 -0.02 0.00
4 1.10 0.81 0.57 0.37 0.21 0.09 0.02 -0.02 -0.01
5 0.70 0.51 0.36 0.23 0.13 0.05 0.00 -0.02 -0.01
6 0.48 0.35 0.24 0.15 0.08 0.03 -0.00 -0.02 -0.02
7 0.35 0.25 0.17 0.11 0.06 0.02 -0.01 -0.02 -0.02
8 0.26 0.19 0.13 0.08 0.04 0.00 -0.01 -0.02 -0.02
9 0.20 0.15 0.10 0.06 0.03 0.00 -0.01 -0.02 -0.02
10 0.16 0.12 0.08 0.04 0.02 -0.00 -0.01 -0.02 -0.02

The range of acceptable masses for the cloud is 0.1–0.2 lb.

    The table for vfrags = vcloud with the same cells boldfaced is:

vfrag, ft s-1 = vcloud

dfrag, ft dsnap, in 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
2 75 87 103 127 166 237 419 1781 -791
3 112 130 155 191 248 356 628 2671 -1186
4 150 174 206 254 331 474 837 3562 -1581
5 187 217 258 318 414 593 1047 4452 -1976
6 225 260 309 381 497 712 1256 5342 -2372
7 262 304 361 445 579 830 1466 6233 -2767
8 300 347 413 508 662 949 1675 7123 -3162
9 337 391 464 572 745 1068 1884 8013 -3557
10 375 434 516 636 828 1186 2094 8904 -3953

The range of acceptable speeds of the fragments is 350–500 ft s-1.

Calculations for mhead = 6 lb
    Here is the first set of three tables, constructed with default values of all variables except mhead, which was set to 6 lb. The boldface cells at the upper left of the table for vlurch (below) represent the cases eliminated because their values exceed the observed speed of <1.0 ft s-1 rearward (the internal constraint). The cells at the lower right are the ones with positive velocities, which of course were also not observed for the lurch.

vlurch, ft s-1

dfrag, ft dsnap, in

1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
2 -8.88 -7.84 -6.80 -5.76 -4.74 -3.71 -2.70 -1.69 -0.71
3 -5.52 -4.84 -4.16 -3.48 -2.80 -2.13 -1.46 -0.81 -0.19
4 -3.87 -3.36 -2.85 -2.35 -1.85 -1.35 -0.86 -0.38 0.05
5 -2.88 -2.48 -2.01 -1.68 -1.28 -0.89 -0.51 -0.14 0.17
6 -2.23 -1.90 -1.56 -1.24 -0.91 -0.59 -0.28 0.01 0.23
7 -1.77 -1.48 -1.20 -0.92 -0.65 -0.38 -0.12 0.10 0.26
8 -1.42 -1.18 -0.93 -0.69 -0.46 -0.23 -0.01 0.17 0.27
9 -1.16 -0.94 -0.73 -0.52 -0.31 -0.11 0.07 0.21 0.27
10 -0.95 -0.76 -0.56 -0.38 -0.20 -0.03 0.13 0.24 0.25

    The external constraints of masses in > 1 lb or < 0.1 lb are shown in the table below. They form a pattern similar to the case with mhead = 7 lb.

mcloud, lb

dfrag, ft dsnap, in 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
2 5.51 4.48 3.53 2.69 1.95 1.33 0.82 0.43 0.16
3 2.51 2.02 1.59 1.20 0.86 0.58 0.35 0.18 0.06
4 1.42 1.14 0.89 0.67 0.48 0.32 0.19 0.09 0.02
5 0.90 0.72 0.56 0.42 0.30 0.20 0.12 0.05 0.01
6 0.62 0.50 0.39 0.29 0.20 0.13 0.07 0.03 0.00
7 0.45 0.36 0.28 0.21 0.14 0.09 0.05 0.02 -0.00
8 0.34 0.27 0.21 0.15 0.11 0.07 0.03 0.01 -0.01
9 0.27 0.21 0.16 0.12 0.08 0.05 0.02 0.00 -0.01
10 0.21 0.17 0.13 0.09 0.06 0.03 0.02 -0.00 -0.01

    The external constraints from high or negative velocities of the fragments and cloud are minimal in this case, and confined to a small area in the lower right of the table below. Their pattern is nearly the same as that for negative masses of cloud shown above.

vfrag, ft s-1 = vcloud

dfrag, ft dsnap, in 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
2 66 74 83 95 112 136 173 237 377
3 99 110 125 143 168 204 260 356 566
4 132 147 166 191 224 272 346 475 755
5 165 184 208 239 281 340 433 593 944
6 198 220 249 286 337 408 519 712 1132
7 231 257 291 334 393 476 606 830 1321
8 264 294 332 382 449 544 692 949 1510
9 297 331 374 430 505 613 779 1068 1699
10 330 367 415 477 561 681 865 1186 1887

   Shown below are the three tables from above, but with cells for solutions made impossible by any of the above constraints indicated in boldface.

vlurch, ft s-1

dfrag, ft dsnap, in

1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
2 -8.88 -7.84 -6.80 -5.76 -4.74 -3.71 -2.70 -1.69 -0.71
3 -5.52 -4.84 -4.16 -3.48 -2.80 -2.13 -1.46 -0.81 -0.19
4 -3.87 -3.36 -2.85 -2.35 -1.85 -1.35 -0.86 -0.38 0.05
5 -2.88 -2.48 -2.01 -1.68 -1.28 -0.89 -0.51 -0.14 0.17
6 -2.23 -1.90 -1.56 -1.24 -0.91 -0.59 -0.28 0.01 0.23
7 -1.77 -1.48 -1.20 -0.92 -0.65 -0.38 -0.12 0.10 0.26
8 -1.42 -1.18 -0.93 -0.69 -0.46 -0.23 -0.01 0.17 0.27
9 -1.16 -0.94 -0.73 -0.52 -0.31 -0.11 0.07 0.21 0.27
10 -0.95 -0.76 -0.56 -0.38 -0.20 -0.03 0.13 0.24 0.25

The range of acceptable values of vlurch is now narrowed to 0.4–1.0 ft s-1, just the same as in the case above, with mhead = 7 lb.
    The table for mcloud with the same cells boldfaced is:

mcloud, lb

dfrag, ft dsnap, in 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
2 5.51 4.48 3.53 2.69 1.95 1.33 0.82 0.43 0.16
3 2.51 2.02 1.59 1.20 0.86 0.58 0.35 0.18 0.06
4 1.42 1.14 0.89 0.67 0.48 0.32 0.19 0.09 0.02
5 0.90 0.72 0.56 0.42 0.30 0.20 0.12 0.05 0.01
6 0.62 0.50 0.39 0.29 0.20 0.13 0.07 0.03 0.00
7 0.45 0.36 0.28 0.21 0.14 0.09 0.05 0.02 -0.00
8 0.34 0.27 0.21 0.15 0.11 0.07 0.03 0.01 -0.01
9 0.27 0.21 0.16 0.12 0.08 0.05 0.02 0.00 -0.01
10 0.21 0.17 0.13 0.09 0.06 0.03 0.02 -0.00 -0.01

This makes the range of acceptable values for mcloud to be 0.1–0.2 lb, again the same as in the previous case.
    The table for vfrags = vcloud with the same cells boldfaced is:

vfrag, ft s-1 = vcloud

dfrag, ft dsnap, in 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
2 66 74 83 95 112 136 173 237 377
3 99 110 125 143 168 204 260 356 566
4 132 147 166 191 224 272 346 475 755
5 165 184 208 239 281 340 433 593 944
6 198 220 249 286 337 408 519 712 1132
7 231 257 291 334 393 476 606 830 1321
8 264 294 332 382 449 544 692 949 1510
9 297 331 374 430 505 613 779 1068 1699
10 330 367 415 477 561 681 865 1186 1887

The range of acceptable values for vfrags = vcloud becomes 300–450 ft s-1, the same as in the previous case.

Calculations for mhead = 8 lb
    Here is the basic set of three tables, constructed with default values of all variables except mhead, which was set to 8 lb. All tables are constructed as before. The table for vlurch and the internal constraints is:

vlurch, ft s-1

dfrag, ft dsnap, in 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
2 -6.45 -5.08 -3.71 -2.36 -1.03 0.16 2.04 3.20 4.52
3 -3.93 -3.03 -2.13 -1.24 -0.39 0.27 1.95 2.58 3.43
4 -2.68 -2.01 -1.35 -0.70 -0.09 0.26 1.98 2.29 2.90
5 -1.94 -1.41 -0.89 -0.38 0.07 0.20 2.05 2.14 2.59
6 -1.45 -1.02 -0.59 -0.18 0.17 0.12 2.14 2.04 2.39
7 -1.11 -0.74 -0.38 -0.04 0.22 0.03 2.25 1.99 2.26
8 -0.85 -0.53 -0.23 0.05 0.25 -0.07 2.36 1.97 2.16
9 -0.66 -0.38 -0.11 0.12 0.27 -0.18 2.48 1.96 2.10
10 -0.50 -0.26 -0.03 0.17 0.27 -0.29 2.60 1.96 2.05

It leaves a narrow diagonal zone of acceptable values that fall between 0.1 and 1.0 ft s-1 rearward. The two isolated values near the bottom center will be eliminated by the external constraints.
    The external constraints of masses in excess of 1 lb or below 0.1 lb are shown in the table below. They form a pattern similar to the cases with mhead = 6 and 7 lb, except for a few acceptable cases in the upper right.

mcloud, lb

dfrag, ft dsnap, in 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
2 3.24 2.19 1.33 0.68 0.23 0.01 0.01 0.22 0.65
3 1.45 0.97 0.58 0.29 0.09 -0.01 -0.01 0.09 0.28
4 0.81 0.54 0.32 0.16 0.04 -0.01 -0.01 0.04 0.15
5 0.51 0.34 0.20 0.09 0.02 -0.01 -0.02 0.02 0.09
6 0.35 0.23 0.13 0.06 0.01 -0.02 -0.02 0.01 0.06
7 0.25 0.16 0.09 0.04 0.02 -0.02 -0.02 0.00 0.04
8 0.19 0.12 0.07 0.02 -0.00 -0.02 -0.02 -0.00 0.02
9 0.15 0.09 0.05 0.02 -0.01 -0.02 -0.02 -0.01 0.01
10 0.12 0.07 0.04 0.01 -0.01 -0.02 -0.02 -0.01 0.01

    The external constraints from high or negative velocities of the fragments and cloud are substantial in this case (below), and occupy nearly the entire right half of the table.

vfrag, ft s-1 = vcloud

dfrag, ft dsnap, in 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
2 87 106 136 190 315 922 -996 -323 -193
3 130 159 204 285 473 1384 -1494 -485 -290
4 174 212 272 380 631 1846 -1992 -647 -386
5 217 265 340 475 788 2307 -2490 -809 -483
6 260 318 408 570 946 2769 -2988 -970 -579
7 304 371 476 666 1104 3230 -3486 -1132 -676
8 347 424 544 761 1261 3692 -3984 -1294 -772
9 391 477 613 856 1419 4153 -4482 -1456 -869
10 434 530 681 951 1577 4615 -4980 -1617 -965

    Shown below are the three tables from above, but with cells for solutions made impossible by any of the above constraints indicated in boldface. Note how the increased mass of the head has "squeezed" the zone of acceptable solutions to a very small one.

vlurch, ft s-1

dfrag, ft dsnap, in 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
2 -6.45 -5.08 -3.71 -2.36 -1.03 0.16 2.04 3.20 4.52
3 -3.93 -3.03 -2.13 -1.24 -0.39 0.27 1.95 2.58 3.43
4 -2.68 -2.01 -1.35 -0.70 -0.09 0.26 1.98 2.29 2.90
5 -1.94 -1.41 -0.89 -0.38 0.07 0.20 2.05 2.14 2.59
6 -1.45 -1.02 -0.59 -0.18 0.17 0.12 2.14 2.04 2.39
7 -1.11 -0.74 -0.38 -0.04 0.22 0.03 2.25 1.99 2.26
8 -0.85 -0.53 -0.23 0.05 0.25 -0.07 2.36 1.97 2.16
9 -0.66 -0.38 -0.11 0.12 0.27 -0.18 2.48 1.96 2.10
10 -0.50 -0.26 -0.03 0.17 0.27 -0.29 2.60 1.96 2.05

The range of acceptable values of vlurch is restricted to 0.5–1.0 ft s-1, similar to the ranges of the two cases above.
    The table for mcloud with the same cells boldfaced is:

mcloud, lb

dfrag, ft dsnap, in 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
2 3.24 2.19 1.33 0.68 0.23 0.01 0.01 0.22 0.65
3 1.45 0.97 0.58 0.29 0.09 -0.01 -0.01 0.09 0.28
4 0.81 0.54 0.32 0.16 0.04 -0.01 -0.01 0.04 0.15
5 0.51 0.34 0.20 0.09 0.02 -0.01 -0.02 0.02 0.09
6 0.35 0.23 0.13 0.06 0.01 -0.02 -0.02 0.01 0.06
7 0.25 0.16 0.09 0.04 0.02 -0.02 -0.02 0.00 0.04
8 0.19 0.12 0.07 0.02 -0.00 -0.02 -0.02 -0.00 0.02
9 0.15 0.09 0.05 0.02 -0.01 -0.02 -0.02 -0.01 0.01
10 0.12 0.07 0.04 0.01 -0.01 -0.02 -0.02 -0.01 0.01

This makes the range of acceptable values for mcloud 0.1–0.2 lb, again the same as in the previous cases.
    The table for vfrags = vcloud with the same cells boldfaced is:

vfrag, ft s-1 = vcloud

dfrag, ft dsnap, in 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
2 87 106 136 190 315 922 -996 -323 -193
3 130 159 204 285 473 1384 -1494 -485 -290
4 174 212 272 380 631 1846 -1992 -647 -386
5 217 265 340 475 788 2307 -2490 -809 -483
6 260 318 408 570 946 2769 -2988 -970 -579
7 304 371 476 666 1104 3230 -3486 -1132 -676
8 347 424 544 761 1261 3692 -3984 -1294 -772
9 391 477 613 856 1419 4153 -4482 -1456 -869
10 434 530 681 951 1577 4615 -4980 -1617 -965

The range of acceptable values for vfrags = vcloud is 300–450 ft s-1, very similar to the previous cases.

Conclusions
    The above analysis leads to a series of interesting and important conclusions.

mhead, lb vlurch, ft s-1 mcloud, lb vfrags = vcloud, ft s-1
6 0.4–1.0 0.1–0.2 300–450
7 0.4–1.0 0.1–0.2 350–500
8 0.5–1.0 0.1–0.2 300–450

 

 

 

 

 

 

 

 

 

 

 

Ahead to Constraints from Rhead vs. Rbullet
Back to Constraints from mcloud vs. vcloud

Back to Physics of the Head Shot